Skip Top nav bar link group topnav end piece go to business section go to education section go to history section go to gallery section go to news section go to organizations section go to research section go to search engine go to site index topnav end piece
NASA Meatball NASA Dryden X-43A banner
X-43A/Hyper-X Vehicle Arrives at NASA Dryden X-43A/Hyper-X Vehicle Arrives at NASA Dryden

Photo Number: EC99-45208-6
Photo Date: October 1999

Formats: 524x480 JPEG Image (103 KBytes)
1119x1024 JPEG Image (417 KBytes)
3000x2744 JPEG Image (4,020 KBytes)

The X-43A Hypersonic Experimental Vehicle, or "Hyper-X," carefully packed in a protective shipping framework, is unloaded from a container after its arrival at NASA's Dryden Flight Research Center in October 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude).

Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, "air-breathing" engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000).

Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort.

The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research.

Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads.

Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle.

The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 "Mothership." After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

Keywords: Hyper-X; X-43A; B-52; Pegasus rocket booster; hypersonic; Dryden Flight Research Center; Langley Research Center; scramjet; Space Shuttle; Micro Craft; Inc.; Orbital Sciences Corporation

Last Modified: February 6, 2002
Responsible NASA Official: Marty Curry
PAO Webmasters

NASA Website Privacy Statement